

White Paper

The 4 Hidden Costs of
Code Maintenance

 The 4 Hidden Costs of Code Maintenance

P a g e 2

Summary

Code maintenance has grown to become the largest budget item in most software development
organizations [1][2]. Many significant cost and quality problems spawn and proliferate in common code
maintenance development activities. This paper examines the source of these problems and explains
how modern code search technology is being used to remedy these issues.

This paper addresses the most common and costly code maintenance issues and solutions. The key code
maintenance issues are:

1) Steep learning curve (faced by developers working with someone else’s code)
2) Insufficient research and planning
3) Duplication of effort
4) Poor compliance with coding standards and practices

Enterprise‐wide code search and analysis is a technology which can be used by development
organizations to drive down maintenance costs, defects and waste associated with these problems. By
breaking down information access barriers to code, this technology can save organizations millions of
wasted dollars each year and help refocus development on strategically significant opportunities.

A look at the problem

Today’s software development methodologies and tools do a good job of making major software
releases more manageable. Costs, quality and time‐to‐market are reasonably predictable and well
understood.

Major releases get the best resources, planning and support.

The challenge involves work that is done between major releases. This work is often referred to as
“evolutionary development” or “code maintenance.”

The problem: development performed between releases is prone to suboptimal resourcing, limited
planning and poor design cooperation.

As a result maintenance generates more than its fair share of cost and quality problems. The core
problems stem from common development practices and situations:

• Developers frequently must work with code they didn’t write and don’t understand

• Complex component and distributed architectures make learning unfamiliar code extremely

difficult

• The inability to access and share relevant insight (code, developer contact, pertinent

documentation) is ubiquitous

 The 4 Hidden Costs of Code Maintenance

P a g e 3

• Developers lack the time or tools to assess the impact of code change and determine change

requirements across the organization

• Mergers and acquisitions, multisite development teams, laptops, and management autonomy

result in little or no ability to detect or prevent the same problem from being “fixed”

independently and differently across projects

• The envelope of time pressure around the preceding issues results in incomplete fixes, “hacks”,

and code entropy.

How big of a problem is code maintenance?

In companies with 100+ developers and/or an active codebase of 500K+ lines of code, software
maintenance will account for more than half of the overall development budget. The problem is greater
in larger organizations. The result is that code maintenance increasingly chews up a greater percentage
of IT spending, stealing budget from projects that are needed to drive future financial returns.

For development organizations, this problem is growing. The maintenance liability will continue to grow
because of three factors:

• Code interdependencies are increasing

• The rate of code change is increasing

• Poor code maintenance spawns additional code maintenance issues.

This is a significant problem with aggressive growth. It is significant and expensive cancer that threatens
virtually all software development organizations. Although organizations are well aware of the
symptoms, most do not understand the common driving forces or practical solutions.

 The 4 Hidden Costs of Code Maintenance

P a g e 4

The Evolving Landscape of Software Development

Table 1. Key Cost and Quality Drivers Software Development

In the past, code was developed around a relatively static and predictable framework. Applications
relied on simple component architectures that were stable and predictable. As a result, most
development was applied to major releases that could be carefully managed against a modest number
of predictable dependencies. Tools and methodologies (e.g., waterfall, xtreme) ensured the efficient
creation of these monolithic applications through finely detailed requirements, development and testing
planning.

The current development landscape is very different (see Table 1).

Code today is more complex, more dynamic and built from component modules for – at least in theory –
greater development leverage and improved quality. Many independent teams are involved in the
varied component modules that create a working stack of software. Development cycles for these

Past Present

Release cycles Long Short

Requirements Detailed Basic

Interdependencies Few Many

Stack change rate Quarterly/Yearly Daily/Weekly

Planning Full Ad‐hoc

Points of coordination Few Many

% Developer time on someone
else’s code

<25% >75%

Maintenance as % of total effort Less than 50% More than 50%

Ability to control lifecycle quality High ??

Ability to control lifecycle costs High ??

Ability to plan and manage dev
spending

High ??

 The 4 Hidden Costs of Code Maintenance

P a g e 5

components are short. The overall rate of change within a complete application code stack is very high.
As a result, the frequency of “post release” development issues (defects, security vulnerabilities,
performance issues, compatibility issues) has increased.

This accelerating cycle of change forces development behaviors out of the carefully managed and
predictable envelope of ALM best practices (detailed analysis, requirements definition, test planning,
etc) and into the realm of “no time to do it right; we’ll do the best we can now and patch it later after
it’s live.”

Less experienced programmers and outsourced development teams are typically assigned to perform
maintenance or evolutionary development. Less experienced staffers often lack deep code knowledge.
They have limited visibility into relevant coding examples, dependences or documentation. Much of
their work is left to their discretion (uncontrolled or minimally controlled processes) and they are forced
to work under tight deadlines. The vast storehouse of reusable components goes mostly unused.

Rapidly changing code components combined with time pressure, lack of experience and poor
coordination result in costly, chronic problems in software maintenance. As a result, maintenance ‐ and
evolution‐driven code changes are frequently the source of costly (but avoidable) problems.

The 4 Critical Issues in Code Maintenance

Issue 1 Steep learning curve

• In most cases, the person who works on a maintenance issue isn’t the original code author
• Maintenance developers tend to be newer or less experienced developers
• Code (inter) dependencies make learning very difficult to understand, particularly if the code is

external to the known project and multiple versions of the code are involved – this is when the
right code can’t be found or easily inspected

As a result, maintenance code changes are commonly performed with an incomplete understanding of
the code. Important nuances or edge cases may be overlooked or mishandled due to the fact that code
cannot be adequately learned within the time allotted for the maintenance work.

Issue 2 Insufficient research and planning

• Once a release is in the maintenance phase of the lifecycle, there is significant pressure to
remedy the problem quickly.

• Despite best intentions and heroic efforts, many changes implemented during maintenance are
not carefully planned or executed.

• Time to research existing fixes for similar problems is seriously limited.
• Low visibility into the collective body of relevant work – for similar fixes, lessons learned, testing

resources, etc. This information is typically stored in systems that the maintenance developer
doesn’t have access to or knowledge of.

 The 4 Hidden Costs of Code Maintenance

P a g e 6

• It is impossible to understand the current and downstream impact of proposed changes to other
projects that use or depend on the code being changed. Performing thorough impact analysis is
desirable, but not practical due to development system information access barriers.

Without proper scoping and coordination, changes are frequently incomplete and result in greater than
normal level of downstream defects. Poor maintenance practices create additional maintenance issues.

Issue 3 Duplicated coding

• For any developer involved in post release code changes, visibility into the body of code changes
that are “in development” and “successfully completed” is extremely limited.

• Manually managed code libraries, practice centers, code reviews and collaboration tools are
ineffective knowledge transfer mechanisms. This is because developers are coders not
catalogers, communicators or documenters – particularly with time sensitive or complex issues.

• Faced with little or no relevant information or guidance, developers will devise and implement
their own changes. In almost all cases, the change for a given issue will vary widely from
developer to developer.

The presence of the same issue in different bodies of code will result in multiple “fixes” to address the
same issue. Not only does the planning, coding and testing of more than one fix for the same problem
represent wasted effort, but the downstream maintenance and support liability created by each “fix
stream” is completely avoidable.

Issue 4 Divergence from coding standards

The pressure for timely fixes, developer unfamiliarity with the code and less‐than‐rigorous planning are
common factors in software maintenance. These common factors result in uneven coding practices such
as the following:

• Modifying local instances of code components without merging changes into the main branch.
• Usage of components or code that is unauthorized (for technical or legal reasons).
• Usage of coding techniques that violate coding standards or don’t fully leverage known best

practices.

Key Solution Requirements

The common thread among these 4 issues is a fundamental inability to access relevant information
quickly and accurately. A variable solution to these key maintenance related problems must:

• Make it fast and easy for developers to access, explore and deeply understand highly

interdependent code that is managed across many different systems and projects.

• Rapidly pinpoint where similar code is defined and used.

• Accurately determine defect injection points.

• Precisely predict defect propagation across multiple versions and projects.

 The 4 Hidden Costs of Code Maintenance

P a g e 7

• Quickly determine which projects will be impacted by code component, service (SOA) or third

party code modification.

• Continuously discover violations of coding “best practices” before code changes are propagated.

• Quickly assess organization‐wide exposure to known security and performance vulnerabilities.

• Identify candidates for re‐factoring or SOA implementation.

• Detect and monitor unmerged code changes in components or shared code.

• Monitor code submits for known coding defects and compliance with key coding practices.

• Help developers more quickly and deeply understand the code they are working on, but which

they did not author.

These requirements address remediation of the top maintenance issues as summarized in Table 2:

 Problem 1:
Learning

Curve

Problem 2:
Poor

Planning

Problem 3:
Duplicated

Coding

Problem 4:
Coding

Compliance

Explore code

Locate similar code

Identify defect injection points

Assess defect propagation

Company‐wide Impact analysis

Coding practice monitoring

Global vulnerability assessment

Refactoring, SOA opportunities

Monitor code divergence

Code related info access

Table 2. Maintenance Solution Requirements

Code Search Solutions to Maintenance

As mentioned earlier, the root problem behind the code maintenance issues is poor information access.
Information access problems are a classic area for solutions that are driven by search technology.

 The 4 Hidden Costs of Code Maintenance

P a g e 8

Several issues make development (code) search complex and unique ‐ these issues make traditional
enterprise or “horizontal” search solutions ineffective.

Development information is stored in proprietary SCM and database systems that are related by a
variety of proprietary metadata linking architectures. Being able to continuously and reliably access the
code and then generate a searchable library is essential. Maintaining the project level code structure
and preserving the information references to the code is also very important.

Another issue is the ability to support code related searches. Code searches and traditional keyword
searches are fundamentally different. Being able to use syntactic and code structural characteristics of
the code is an important way to pinpoint the right code. Similarly, the ability to detect highly similar
code patterns is crucial.

One solution that addresses these capabilities is Krugle Enterprise. Two interesting and unique
technologies are incorporated into this solution:

1. Comprehensive Code Inventory (CCI). Using its own patented technology, Krugle Enterprise
automatically catalogs and indexes all of the relevant code contained within an organization’s firewall.
This creates a single, comprehensive up‐to‐date inventory of source code and related information for an
organization. Information and links from resources related to the code are also indexed and fully
searchable.

Krugle supports a wide range of SCM systems (including Clearcase, Perforce, CVS, SVN, StarTeam, etc.).
Krugle makes complete, current and reliable code inventorying possible for the first time.

2. Krugle Enterprise delivers Code Optimized Code Search and Analysis – technology that helps
pinpoint useful examples, reusable code and all instances of specified code patterns. Krugle’s underlying
index uses semantic information extracted from the structure of each code file. It also offers a query
capability that helps match similar multi‐line code patterns in addition to simple keywords. This enables
accurate identification and location of code fragments and patterns.

Summary

Significant information access problems are responsible for cost and quality problems in software
maintenance. These problems consume a significant portion of the budget in most software
development organizations.

These problems can be addressed through search technologies that are optimized for source code and
related development information. A viable technology must operate robustly across a variety of SCM
systems and development environments, without creating operational risk or requiring changes to

 The 4 Hidden Costs of Code Maintenance

P a g e 9

existing software methodologies. A practical solution must also employ code optimized query
capabilities that leverage non‐code information as well as the source code.

References

[1]Annual software maintenance cost in USA has been estimated to be more than $70 billion (Sutherland, 1995; Edelstein, 1993). SOURCE:
Software Maintenance Costs, Jussi Koskinen, Information Technology Research Institute, ELTIS-project. University of Jyväskylä, P.O. Box
35, 40014-Jyväskylä, Finland. Available at: <URL: http://www.cs.jyu.fi/~koskinen/smcosts.htm> , since 12th Sept. 2003. Email:
koskinen@cs.jyu.fi)

[2] An average Fortune 100 company maintains 35 million lines of code (Müller et al., 1994)…Older languages are not dead. E.g. 70% or
more of the still active business applications are written in COBOL (Giga Information Group)… There are at least 200 billion lines of COBOL-
code still existing in mainframe computers alone (Gartner Group)…Lientz, B.P. & Swanson, E. (1980). “Software Maintenance Management:
A Study of the Maintenance of Computer Application Software in 487 Data Processing Organizations”. Addison-Wesley: Reading, MA, 214 p.

[3] Studies of software maintainers have shown that approximately 50% of their time is spent in the process of understanding the code that
they are to maintain (Fjeldstad & Hamlen, 1983; Standish, 1984). SOURCE: Software Maintenance Costs, Jussi Koskinen,

